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Figure 1. 4D scene motion generated by our method. We present CHORD, a universal generative pipeline capable of animating scenes
with multiple objects that interact with each other. Project page: https://yanzhelyu.github.io/chord

Abstract

Dynamic objects in our physical 4D (3D + time) world
are constantly evolving, deforming, and interacting with
other objects, leading to diverse 4D scene dynamics. In this
paper, we present a universal generative pipeline, CHORD,
for CHOReographing Dynamic objects and scenes and syn-
thesizing this type of phenomena. Traditional rule-based
graphics pipelines to create these dynamics are based on
category-specific heuristics, yet are labor-intensive and not
scalable. Recent learning-based methods typically demand
large-scale datasets, which may not cover all object cate-
gories in interest. Our approach instead inherits the uni-
versality from the video generative models by proposing a
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distillation-based pipeline to extract the rich Lagrangian
motion information hidden in the Eulerian representations
of 2D videos. Our method is universal, versatile, and
category-agnostic. We demonstrate its effectiveness by con-
ducting experiments to generate a diverse range of multi-
body 4D dynamics, show its advantage compared to exist-
ing methods, and demonstrate its applicability in generat-
ing robotics manipulation policies. Project page: https :
//yanzhelyu.github.io/chord

1. Introduction

Humans and other embodied agents live in a 4D (3D + time)
world, a world composed of a diverse range of dynamic ob-
jects, i.e., objects that can evolve, deform, or interact with
other objects. Creating 4D motions for both object defor-
mations and interactions is crucial when building 3D world
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models for robotics [48, 74] and embodied Al [36].

Traditionally, it has been challenging to generate such
motions for a scene composed of dynamic objects in their
static snapshots because it requires extensive manual mod-
eling and expert labor. Recent approaches [73] have at-
tempted to learn such 4D generators purely from data in an
end-to-end manner. However, most existing datasets [13]
focus on the internal deformations and evolutions of an in-
dividual object with little to no coverage on their interac-
tions, and 4D data describing both deformations of objects
and object interactions is extremely rare. This scarcity on
scene-level 4D dynamics has rendered existing data-driven
approaches into only being capable of generating dynamics
of a single object.

Inspired by the recent success of general-purpose video
generative models, we use a different approach to tackle this
problem: distilling these scene motions from video gener-
ative models. At a high level, we iteratively optimize the
low-level Lagrangian deformations of each object. At each
optimization step, we deform the 3D scene and render it
from certain viewpoints, and let video generative models
judge whether the deformation is plausible. Through this
process, we essentially leverage video models as a high-
level “choreographer” to plan the motions of individual ob-
jects and make them consistent with each other.

Despite the promise of this distillation-based paradigm,
getting plausible results with it has been challenging. Ex-
isting methods [4, 30, 64] mainly operate at the object level
and often show noticeable artifacts in the generated motion.
Two major obstacles hinder these approaches from work-
ing effectively in our setting: (1) 4D deformations are both
spatially high-dimensional and temporally ill-regularized,
and (2) the non-conventional architecture designs of mod-
ern video generative models are not compatible with exist-
ing distillation algorithms [53].

We address the first challenge by analyzing the inherent
locality of 4D deformations: temporal deformation fields
should be locally smooth in both space and time. To
this end, we design a coarse-to-fine 4D motion represen-
tation that injects hierarchical structures to both the spatial
and the temporal domain. Spatially, we adopt a bi-level
control point-based representation that disentangles fine-
grained motion details from coarse transformations. Tem-
porally, inspired by a time-honored data structure in theo-
retical algorithm design, i.e. the Fenwick tree [15, 34], we
store deformations in a cumulative, range-based structure
that implicitly enforces temporal coherence and improves
the learnability of long-horizon motion. With these two in-
novations, our novel 4D representation is robust, stable, and
supports generating a diverse range of motions.

The second challenge stems from modern video genera-
tive models being based on flow-based models [44]. These
models are incompatible with the traditional distillation al-

gorithms. Therefore, we propose a novel strategy for dis-
tillation from modern rectified flow-based video generative
models. We derive a novel Score Distillation Sampling
(SDS) [53] target for flow-based video diffusion models and
analyze their noise pattern, thus enabling video models to
effectively provide guidance to our 4D representation.

By proposing these two innovations and the framework
to choreograph object motion, we arrive at a simple yet ele-
gant solution to the challenging problem of generating 4D-
consistent motion of dynamic objects in a scene. We name
this pipeline “CHORD”, for CHOReographing Dynamic
objects and scenes. CHORD is universal, versatile, and ap-
plicable across a wide range of dynamic phenomena. We
evaluate our framework on diverse dynamic objects and
compare it against prior art and show clear advantages.

Beyond visual generation, our pipeline also enables the
robot manipulation in the physical world by generating
physically-grounded Lagrangian deformation trajectories of
real-world objects. We demonstrate this by leveraging the
generated 3D trajectories to plan the motion of a real robot
and showing that they can guide zero-shot manipulation of
diverse dynamic objects.

In summary, our contributions are as follows:

1. A 4D motion representation that combines a Fenwick
tree—inspired cumulative temporal structure with a hi-
erarchical low-to-high DoF parameterization, making it
well-suited for distillation-based 4D generation.

2. A distillation strategy for modern flow-based video gen-
erative models to make SDS algorithms effective on gen-
erating 4D motions from 2D video generative models.

3. A robust framework to generate physically-grounded 4D
motions for diverse dynamic objects that are applied to
learning real-world robotic manipulation policies.

2. Related Work

Object-Level 4D Generation. Generating 4D consistent
object deformations has been a long-standing challenge
in the community. Traditional approaches first determine
category-specific kinematic models (i.e., rigging represen-
tations) [6, 8, 22, 43, 45, 51, 71, 88] and then generate
motion based on them [20, 28, 42, 47, 52, 58, 60, 63, 77],
which inherently limits these methods to constrained cate-
gories. Some methods [73, 82, 86] attempt to learn end-to-
end 4D generators from existing 4D object datasets [12—14],
but they struggle to generalize beyond humanoid charac-
ters since most existing datasets are dominated by animated
human-like models. Other approaches [4, 19, 21, 29, 38, 40,
46, 49, 55, 56, 61, 64, 67,75, 78, 79, 83, 85] avoid super-
vised learning by performing 4D reconstruction or distilla-
tion from video generative models, yet they typically yield
minor and unrealistic motion due to the difficulty of opti-
mizing high-dimensional 4D motion and the noise in the



guidance signals. Our framework addresses these limita-
tions by assuming neither category-specific kinematic struc-
ture nor large-scale 4D datasets, and generates realistic 4D
motion for arbitrary objects.

Scene-Level 4D Generation. Scene-level 4D generation
extends beyond the object-centric setting, introducing sub-
stantially more complexity and greater challenges. It must
not only produce plausible object-level motion but also
maintain motion consistency across multiple interacting ob-
jects. Therefore, existing methods often simplify the prob-
lem by restricting it to specific categories (e.g., human-
object interaction [25, 37, 68, 81]), enforcing physical con-
straints [9, 39, 41, 87], or conditioning on symbolic struc-
tures [3, 57]. Some approaches attempt to produce 4D
scenes by reconstructing them from videos [10, 35, 66, 70]
generated by video models, yet the resulting representation
remains largely 2.5D and does not support full 360° view
synthesis. Our approach is the first to tackle the challeng-
ing setting of generating scene-level 4D motion of objects
without relying on any category-specific inductive bias.

4D Representations. A key component in 4D generation
pipelines is the selection of the underlying 4D representa-
tion. Early works use high-dimensional deformation fields
to represent 4D scenes [19, 50, 54, 69]. They work well for
reconstruction targets with dense inputs, but are not suitable
for generative tasks with noisy supervision signals. Recent
works explore reducing the dimensionality of 4D represen-
tations in the spatial domain [21, 22, 66, 72]. Our hierarchi-
cal 4D representation strengthens this idea by injecting low-
dimensionalities and hierarchies in both spatial and tempo-
ral domains, which serves as a backbone representation in
our 4D generation framework.

3. Method

Given a 3D scene containing multiple dynamic objects rep-
resented by their static 3D snapshots, along with a text
prompt describing how the scene should change over time
(e.g., a man facing a lamp with the prompt “the man lowers
the head of the lamp with his hand”), our goal is to generate
a sequence of temporal deformations that drive the objects
so that the resulting 3D animations aligns with the prompt.

Figure 2 shows an overview of our method. We it-
eratively optimize a 4D scene motion representation us-
ing guidance signals distilled from a video generative
model. In the following section, we detail the three main
components in this framework: a strategy for distillation
from modern rectified flow-based video generative models
(Sec. 3.2), a robust and general 4D scene motion represen-
tation (Sec. 3.3), and regularization terms to ensure stable
optimization (Sec. 3.4).

3.1. Preliminary: Score Distillation Sampling

The Score Distillation Sampling method [53] was intro-
duced to distill 3D assets from image diffusion models [24].
At each iteration, an image z is rendered from the 3D asset
parameterized by 6. Gaussian noise ¢ is then added to pro-
duce a noisy image z,, where the noise level 7 is uniformly
sampled from (0,1). The noisy image z, is subsequently
fed into a image diffusion model, which predicts noise €.
SDS updates 6 with the following gradient:
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where w(7) is a weighting function.

Extending this idea to 4D generation follows the same
principle: at each iteration, a video is rendered from the
4D asset, blended with noise, and then passed through the
diffusion model, which provides gradients to update the 4D
representation.

3.2. Distilling from Rectified Flow Models

The above-mentioned 4D SDS algorithm is conceptually
simple, yet it is non-trivial to apply them to distill from
modern video generative models. The major obstacle is
the gap between the diffusion architecture used in the orig-
inal SDS target and the Rectified Flow (RF)-based model
architecture in modern video generative models, such as
Wan 2.2 [65] used in our paper.

To mitigate this architectural gap, we derive a novel SDS
target for RF models. Similar to the derivation of SDS gra-
dients for diffusion models [53], we align the optimization
objective with the model’s training loss and express the SDS
update rule for RF models as:

VoLresps(0; 2, y) =
E: e |w(r) (0(zr;7,y) —e—l—z)% , @
’ 00
where 7 is the noise level uniformly sampled from (0, 1),
w(7) is the corresponding weight in the training schedule,
e is the added noise, z, = (1 — 7)z + 7€ denotes the noisy
video, and © (z.; 7,y) is the predicted velocity.

A domain-specific noise sampling strategy is critical
for this target to work well on our objective of optimiz-
ing scene deformations. We observed that the deforma-
tions are prone to be generated at higher noise levels 7,
as significant changes only happen when substantial noise
is added. Based on this observation and the properties of
w(7), instead of sampling 7 uniformly, we perform sam-
pling according to a probability density function w(7) =
Ww(ﬂ, which is the normalized form of w(7).

With this modification in sampling strategy, the weighted
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Figure 2. Overview. For the input meshes of a given scene, we first convert them into 3D-GS representations to enable smooth gradient
computation. The converted 3D-GS models are then used to initialize a 4D representation (Sec. 3.3). We iteratively refine this 4D
representation by sampling camera poses at each iteration, rendering the corresponding videos, and passing them to the video generation
model to obtain optimization gradients (Sec. 3.2). Additionally, we compute regularization terms (Sec. 3.4) to enforce spatial and temporal

smoothness during the optimization process.

RFSDS update rule becomes:

VoLwrrsps(0; 2,y) =
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where the weighting term in RFSDS gradients defined
in Eq. (16) is eliminated to ensures the invariance of the
expectation of gradients. Empirically, this yields more real-
istic generated motion, as shown in Sec. 4.3.

Practically, this noise sampling strategy is implemented
with an annealing noise schedule [26, 62] during the opti-
mization. At each optimization step ¢ out of entire [ itera-
tions, we set 7 to be a fixed noise level 7;, which is obtained
by solving:
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where h(7) = [T (t)dt is the cumulative distribution
function (CDF) of @ (7). This creates an annealing sched-
ule in which 7 gradually decreases over training, enabling
coarse motion to form early and allowing fine deformations
to be refined in later iterations.

3.3. Hierarchical 4D Representation

Most existing 4D representations are highly unstable to op-
timize with the W-RFSDS target described above. There-
fore, we introduce a hierarchical 4D representation that
leverages natural locality of deformations in both spatial
and temporal domain to stabilize the optimization process.

Our representation is composed of two components: a
geometric representation of canonical shapes and a 4D mo-
tion representation that deforms the canonical geometry
in different frames. The canonical shape of our 4D rep-
resentation is represented with 3D-GS [31]. Specifically,
given N mesh inputs, we convert them into 3D-GS models
S = {G;}, by optimizing directly on multi-view images
rendered from the meshes, where each G; denotes a con-
verted 3D-GS model.

Deformed State

Initial State Coarse Control Points Fine Control Points

Figure 3. Illustration of the hierarchical control point repre-
sentation. We represent the deformation using a spatial hierarchi-
cal structure. Coarse control points capture large-scale deforma-
tions, while fine control points refine local details.

At time ¢, the canonical 3D geometry is deformed with a
set of deformation fields to represent the 4D motion of the
3D-GS scene S. The set of deformation fields at time ¢ is
denoted by D = {T7;'}¥ ,, where 7' denotes the deforma-
tion for object ¢ at time .

The 4D scene motion D is represented with a novel rep-
resentation that injects hierarchical structures in both spatial
and temporal domain, as detailed below.

Spatial Hierarchy with Control Points. The deforma-
tion fields 7' are spatially high-dimensional, and we reduce
the dimensionality of this representation with a hierarchical
control point-based representation.

Inspired by SC-GS [27], we represent 7;' with a coarse
level and a fine level of control points — a sparse set of
spatially-grounded blobs that controls a local spatial region
of deformations. The coarse level of control points roughly
dictates how an object will deform, and the fine level adds
more details to the deformation.

Specifically, each control point is defined by a mean p
and a covariance matrix ¥, which together determine its
radius of influence. In addition, each control point main-
tains a sequence of deformations (R, T*) in SE(3). The
deformation of a Gaussian is obtained by blending transfor-
mations from neighboring control points using linear blend
skinning. For a Gaussian (u, g, S,C,0) € G;, we denote its
K nearest neighboring control points as A/. The deformed



Gaussian at time ¢ is then computed as:
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where 7}, € R* are the quaternion representations of rota-
tion on control point k, and ® is the production of quater-
nions. Furthermore, 5 in the formula denotes the blending
weight of control point k, which is calculated through:
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We optimize the bi-level sets of control points in a
coarse-to-fine manner, following the noise schedule defined
in Eq. (4). When 7 is large during the optimization process,
substantial motion can be generated; however, the SDS gra-
dients produced at such noise levels are often noisy. Con-
versely, when 7 is annealed to a lower value, the gradi-
ents become more stable but are less capable of producing
substantial deformations. To accompany with the inherent
nature of this optimization process, we only optimize the
coarse level of control points at earlier iterations when 7 is
large, and we introduce the fine control points later, once 7

becomes smaller, to append their residual deformations:

[ = Apt + gy, (8)
qgnal = Aqt ® qt (9)

where Ap! and Aq' denote the residual deformations from
the fine layer of control points, computed in the same man-
ner as in Eq. (5) and Eq. (6).

After training, the deformation learned with Gaussians
can be directly transferred to deform meshes. Concretely,
we deform the mesh vertices using Eq. (5) by substituting
the Gaussian means with the vertex positions.

Temporal Hierarchy with the Fenwick Tree. We further
observe that deformations of later frames are challenging
to learn if (R!,T*) of frame ¢ are modeled independently
from other frames. This can be explained by the fact that all
deformations are initially initialized as zero vectors and the
parameters of the first frame are kept frozen, leading to the
significant deviation of deformations in later frames.

To alleviate this issue, we represent the sequence of de-
formations for each control point (R*, T") with the Fenwick
tree, a hierarchical data structure from theoretical algorithm

design [18]. As illustrated in Figure 4, for each control

point k, we maintain nodes Fj, = {(r,[j 5 T,Lj ]) ]T:p where

each node encodes the accumulated deformation over a spe-
cific range of frames. This range-based decomposition al-
lows deformations at different frames to share parameters
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Figure 4. Illustration of the Fenwick Tree representation. Each
node stores the cumulative deformation over a temporal range, al-
lowing nearby frames to share parameters and naturally enforcing
temporal coherence. For example, (r,[f] T,£6]) encodes the accu-
mulated deformation from frames 5-6. Queries for frames 6 and 7
then compose their deformations from a small, overlapping set of

nodes, as shown in the figure.

through overlapping intervals, greatly improving temporal
coherence and enable the learning of long-horizon motion.

The final deformation at frame ¢ is obtained by compos-
ing all relevant nodes:

=Y 17, (10)
JEBIT(t)
rh. = norm( Z i, 1)
JEBIT(t)

where BIT(¢) denotes the set of active nodes returned by
the Fenwick query operation, and norm(-) ensures that the
summed result forms a valid quaternion.

3.4. Regularization

We introduce two regularization terms to further stabilize
the optimization process: a temporal regularization loss to
enforce smoothness over time and a spatial regularization
loss to encourage local spatial consistency.

Temporal Regularization. When rendering the RGB video
for computing the SDS gradients, we additionally render a
3D flow map video F from the same viewpoint, which is
used for temporal regularization. To produce the flow map
at frame ¢, we replace the color attribute of Gaussians in
the 3D-GS rendering equation with p! — p!*!, where pu!
denotes the mean of Gaussian ¢ at time ¢. After obtaining
F, the temporal regularization loss is defined as:

Liemp =Y > |IF3]13, (12)
t p

where the inner summation is over all pixels p, and Ff) rep-
resents the rendered 3D flow at pixel p and time ¢.

Spatial Regularization. To ensure spatially uniform regu-
larization, we generate a uniformly distributed point cloud
near the surface of each object ¢, deform it using the learned
motion, and compute an As-Rigid-As-Possible (ARAP)



loss [59] over the resulting sequence of deformed point
clouds. Specifically, we first compute a signed distance field
(SDF) ¢;(x) from the mesh of object i. We then extract
voxel centers near the surface as S; = {x | |¢;(x)| < 7,x €
Vs }, where V4 is the set of voxel centers on a grid with voxel
size s, and 7 is a predefined threshold. At each iteration, for
every x € §; and timestamp ¢, we compute its deformed
position x! using Eq. (5) (with u replaced by x), thereby
producing the deformed point set S! = {x' | x € S;}.
ARAP loss is then calculated as:

Larap= Y

1,t,XES; ,yENK

Ix—y— Rx(xt -y)li5, (13)

where Ny denotes the set of the 10 nearest neighbors of x
in S;, and Ry is the estimated local rotation matrix at x.

4. Experiments

We evaluate our proposed method on a diverse dynamic
scenes featuring multiple interacting objects. We compare
our approach with several state-of-the-art baselines, each
representing a distinct category of methods.

4.1. 4D Scene Motion Generation

We compare our method against state-of-the-art mesh an-
imation approaches, as well as 4D reconstructions from
camera-controlled video models. Specifically, we com-
pare our approach with four baselines: Animate3D [30],
AnimateAnyMesh [73], MotionDreamer [64], and Trajec-
toryCrafter [84]. Animate3D generates multi-view videos
using a multi-view video diffusion model and then per-
forms 4D reconstruction on them. AnimateAnyMesh di-
rectly predicts mesh deformations using a pretrained Rec-
tified Flow model. MotionDreamer first generates a video
conditioned on the text prompt and a rendering of the given
mesh, and then animates the mesh by performing diffusion
feature matching with the generated video. We present re-
sults from our reimplementation using Wan 2.2, and pro-
vide results obtained with DynamiCrafter [76] which was
used in its original pipeline in the supplementary materials.
TrajectoryCrafter is a video generation model that redirects
camera trajectories for monocular videos. We first generate
a video using Wan 2.2, then produce corresponding multi-
view videos with TrajectoryCrafter, and finally perform 4D
reconstruction on the sampled videos.

We select six scenes spanning diverse object categories
for comparison: “A man petting a dog”, “A cat stepping
on a cushion”, “A sealion nudging a ball”, “A block falling
on a trampoline”, “Two men shaking hands”, and “A robot
picking up a block”. We additionally include comparisons
between our method and baseline approaches for single-
object mesh animation in the supplementary materials.

Qualitative Comparisons. Part of the qualitative results
are shown in Figure 5; please refer to the supplementary

Table 1. Quantitative comparisons with baselines. We conduct
a user study on six scene animations to evaluate the performance.
Additionally, we report the Semantic Adherence (SA) and Physi-
cal Commonsense (PC) metrics computed with VideoPhy-2 [5].

User Study VideoPhy-2

Alignment T Realism?T SA{1 PC7?T

Animate3D 0.34% 0.51% 383 342
AnimateAnyMesh 1.01% 0.51% 3.5 4.5
MotionDreamer (DC) 0.51% 0.84% 3.42  4.08
MotionDreamer (Wan) 0.84% 0.34% 3.5 3.83
TrajectoryCrafter 9.60% 10.44%  4.17 3.83

CHORD (Ours) 87.71% 87.37% 433 425

materials for the complete set of results. Our method ex-
hibits stronger prompt alignment and generates more natu-
ral motion compared to existing approaches. Animate3D
and AnimateAnyMesh fail to generate results that align
with the given prompts, as they have not been extensively
trained on 4D data containing multiple objects. Motion-
Dreamer suffers from severe artifacts due to errors in dif-
fusion feature matching when fitting meshes. Although 4D
reconstruction from videos sampled via TrajectoryCrafter
yields motions that follow the prompts, the results suffer
from strong temporal inconsistencies and unnatural dynam-
ics due to discrepancies among videos generated under dif-
ferent camera trajectories. This highlights the necessity of
distilling a video model in our method.

Quantitative Comparisons. We perform a user study with
99 participants to compare the quality of our method with
the baselines. Additionally, we utilize VideoPhy-2 [5] to
automatically evaluate the rendered videos from two as-
pects: Semantic Adherence (SA) and Physical Common-
sense (PC). As shown in Table 1, our method achieves the
highest score in SA and the second-highest score in PC.
Note that AnimateAnyMesh achieves the highest Physical
Commonsense (PC) score due to its common failure mode,
where objects remain static—an outcome that aligns with
physical commonsense but fails to follow the given prompt.

4.2. Extensions and Applications

Beyond generating multi-object 4D motion, our framework
naturally supports several extension and downstream uses.

Long-Horizon Motion Generation. By using the last
frame of the generated deformation as the input state for the
subsequent generation process, we can extend our method
to produce longer motion sequences. In Figure 1, we show
an example motion sequence consisting of four actions.

Real-world Object Animation. Since our method dis-
tills a video generative model trained extensively on real-
world video data, it is robust and can be applied to animate
scanned real-world objects without concern for the gap be-
tween synthetic and real-world data, as shown in Figure 6.

Robot Manipulation. We demonstrate that the dense ob-
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Figure 5. Qualitative comparisons. We compare our approach with several mesh animation methods. Our method produces results
that better align with the given prompts and exhibit more natural motion. In the figure, A3D refers to Animate3D [30], AAM denotes
AnimateAnyMesh [73], MD represents MotionDreamer [64], and TC corresponds to 4D reconstruction results from videos generated by
TrajectoryCrafter [84]. For additional comparisons and full animation results, please refer to our supplementary website.

grasp planner [17] to propose a grasp on the relevant ob-
ject. Then, the robot either grasps the object or moves to a
pose for pushing the object, which is at an offset from the
proposed grasp. Constrained by a rigid attachment forward
model, where relative transformations of the end-effector

“A man closing the lid of a laptop.” ‘ also apply to the initial points on the object, a motion plan-
Figure 6. Real-world object animation results. ner [32] solves for a sequence of end-effector poses to mini-
mize an objective consisting of transformed points to dense
ject flow generated by our method can be utilized as guid- flow alignment, reachability, and pose smoothness costs.

ance for manipulation of rigid, articulated, and deformable
objects, as shown in Figure 7. We first use an off-the-shelf
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Figure 7. Robot manipulation guided by our generated dense object flow. Given our generated dense object flow, the robot either grasps
or pushes the object of interest in a manner that matches the flow. This allows effective manipulation of rigid objects (first row), articulated
objects (second row), and deformable objects (third and fourth rows).
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“A man closing the lid of a laptop.”
Figure 8. Ablation on noise-level sampling strategy. Removing
our noise-level sampling strategy leads to unnatural motion, such
as the laptop appearing to float.

4.3. Ablation Studies

Noise Level Sampling Strategy We compare the effective-
ness of the noise-level sampling strategy (Sec. 3.2) against
uniform noise sampling with weighting. As shown in Fig-
ure 8, unrealistic results emerge under uniform sampling
due to insufficient coverage of noise levels that inject mo-
tion. In this case, the laptop appears to float above the table.

4D Representation. We study two key components of our
4D representation: the Fenwick tree for modeling defor-
mation sequences and the hierarchical control-point struc-
ture. Results are shown in Figure 9. Removing the Fenwick
tree leads to noticeable artifacts, as later frames become ex-
tremely difficult to learn when each deformation is mod-
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Figure 9. Ablations on components in the 4D representa-
tion. Removing the Fenwick Tree leads to severe artifacts in later
frames; removing fine control points prevents detailed deforma-
tion; and removing coarse control points causes distortions.

eled independently. Removing the fine control-point layer
prevents the model from producing detailed motions (e.g.,
grasping). Conversely, starting with the fine layer from the
beginning also introduces artifacts, since the noise injected
at early iterations cannot be effectively smoothed without
an initial coarse stage.

Regularization. We show that the regularization losses are
necessary. Removing them results in temporal flickering
(e.g., the tail suddenly appearing when temporal regulariza-
tion is removed) and visual artifacts (when spatial regular-
ization is removed), as shown in Figure 10.



™

Input w/o Temporal Reg.  w/o Spatial Reg. Ours (Full)

S
Il
-

R~

“A cat stepping on a cushion.”

Figure 10. Ablations on regularization losses. Removing tem-
poral regularization results in flickering, while removing spatial
regularization results in distortions.

5. Conclusion

We introduce a robust, scalable, and versatile approach to
generate scene-level 4D object motion given only 3D shapes
as input. Our pipeline works effectively for diverse natural
phenomena and opens new possibilities of scalable 4D gen-
eration with guidance from video generative models. It also
enables downstream applications as we demonstrated in the
robotics manipulation.
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A. Implementation Details
A.1. Pipeline Implementation Details

The 3D assets used in our experiments are downloaded from Sketchfab [1] and BlenderKit [7], and we construct the static
scene snapshots in Blender [11]. Rendering of 3D-GS [31] for both mesh-based initialization and 4D optimization is per-
formed using gsplat [80]. We adopt the Wan 2.2 (14B) image-to-video model [65] as our video generation model. All
training is conducted at a resolution of 832 x 464 (the default for Wan 2.2), and deformation sequences of 41 frames are
optimized.

Control points are initialized based on the center points of an occupancy grid. Specifically, for each object, we first
compute a signed distance field (SDF) ¢;(x) from its given mesh. We then extract the set of voxel centers within the object
asZ; = {x | ¢;(x) < 0,x € Vi}, where V; denotes all voxel center points in a grid with voxel size s. Finally, we apply
farthest point sampling followed by K-means clustering on Z; to determine the positions py, of the control points. We further
initialize the scale in each control point’s covariance matrix 3, as the average distance to its three nearest neighboring
control points, and set the initial rotation to the identity. For stable optimization, we keep py fixed and only optimize 3y,
during training. In the training of the deformations, we additionally introduce a split training schedule: at a iteration 100, we
reinitialize all deformations after 30 to the deformation at 30, which further facilitates stable learning for later frames.

We use the log-linear learning rate schedule adopted in 3D-GS. The learning rate for the deformations stored in the
Fenwick tree decays from 0.006 to 0.00006. The learning rate for the scales of the control points follows the same decay
(from 0.006 to 0.00006), while the learning rate for rotations decays from 0.003 to 0.00003. The CFG [23] scale is linearly
decayed from 25 to 12. The weight for the temporal regularization loss is decayed from 9.6 to 1.6, and the weight for the
spatial regularization loss is decayed from 3000 to 300. The voxel size s used for extracting the uniformly distributed point
cloud in temporal regularization and for initializing control points is automatically determined via binary search such that the
number of voxel centers near the surface satisfies |S;| = 7500. Each asset is trained for 2,000 iterations with a batch size of
4, requiring approximately 20 hours on an NVIDIA H200 GPU.

A.2. Robot Manipulation Implementation Details

For the objects used to generate dense object flow, we directly scanned the real objects in the “pick banana” and “lower lamp”
cases and fed the scans into our pipeline. For the other cases, due to challenges in accurately scanning the objects, we instead
measured their length statistics and created digital cousins with matching dimensions in Blender before inputting them into
our pipeline.

A.3. Baseline Implementation Details

For Animate3D [30] and AnimateAnyMesh [73], we merge all objects in the scene into a single mesh and directly input it into
their pipelines. For MotionDreamer [64], we follow their setup and use Neural Jacobian Fields (NJF) [2] as the animation
model, training a separate NJF for each object. For robust 4D reconstruction of videos sampled from TrajectoryCrafter [84],
we use a coarse set of control points with a Fenwick-tree—based deformation sequence as the 4D representation. We addi-
tionally apply both temporal and spatial regularization losses during optimization.

B. Derivation of SDS for Rectified Flow Models

When sampling noise levels 7 uniformly from ¢/(0, 1), the training loss of a Rectified Flow (RF) model [16, 44] is:

Lre(0:2.) = Evnion).« [w(7) [0z 7,3) = (= )] (14)

where € ~ A (0,1) and z; = (1 — 7)z + e is the linearly interpolated latent.
Taking the derivative of Lrg with respect to z yields:

90(2+3 7,
Vilrr(8:2,¥) = Ernsiio.1).c [w(T) (b(z57.y) ~ (e~ 2)) (“(Z&Ty) + I)] . (1s)

Following the derivation style of Score Distillation Sampling (SDS) [53], we omit the term that backpropagates through

the RF model, W, and apply the chain rule from z back to the 4D representation parameters . This gives the RF-SDS
gradient used in the main text:
0z

Vo Lresos(6:2,y) = En.. [wm (6(22:7.y) — (e — 7)) 89] . (16)
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Figure 11. Qualitative comparisons on single mesh animation. We compare our approach with several mesh animation methods.
Our method produces results that better align with the given prompts and exhibit more natural motion. In the figure, A3D refers to
Animate3D [30], AAM denotes AnimateAnyMesh [73], MD represents MotionDreamer [64], and TC corresponds to 4D reconstruction
results from videos generated by TrajectoryCrafter [84].
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“A tiger is walking.”

C. More Experiment Results

In this section, we present additional experimental results for our method.
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Metric Object Animate3D AnimateAnyMesh MotionDreamer (Orig) MotionDreamer (Wan) TC Ours Total

Cat 0 2 0 1 0 9% 99

Dog 0 3 0 1 7 88 99

Hugging 1 0 0 0 1 97 99

. Robot 0 0 1 1 2 95 99

Prompt Alignment ¢\ . 1 0 1 2 43 52 99
Brick 0 1 1 0 4 93 99

Avg 0.3333 1 05 0.8333 95 868333 99

Cat 0 0 1 1 2 95 99

Dog 1 2 1 0 11 84 99

Hugging 0 0 0 0 3 9% 99

. . Robot 0 1 1 1 1 95 99
Motion Realism ¢ 150n 1 0 2 0 37 59 99
Brick 1 0 0 0 8 90 99

Avg 0.5 0.5 0.8333 03333 10.3333 865 99

Table 2. Raw results of the user study on generating scene-level 4D motion. We show the number of vote from each participant on which
option they consider the best under certain metric.

Metric Object Animate3D AnimateAnyMesh MotionDreamer (Orig) MotionDreamer (Wan) TC Ours Total
Chest 2 0 1 0 0 47 50
Lamp 0 1 2 1 0 46 50
Scissors 1 0 1 1 0 47 50
Prompt Alignment  Sitting 4 1 1 0 5 39 50
Walking 1 0 3 0 1 45 50
Avg (raw) 1.6 0.4 1.6 04 12 4438 50
Chest 2 0 1 1 1 45 50
Lamp 5 0 2 0 0 43 50
Scissors 0 1 7 0 1 41 50
Motion Realism Sitting 5 1 2 0 6 36 50
Walking 2 2 1 0 0 45 50
Avg (raw) 2.8 0.8 2.6 02 1.6 42 50

Table 3. User study results for quantitative comparison on single-object 4D motion generation.

C.1. Comparison on Single Mesh Animation

We further compare our method with baselines on the task of single-object mesh animation. The set of baselines follows the
main paper: Animate3D [30], AnimateAnyMesh [73], MotionDreamer [64], and 4D reconstruction from videos generated
by TrajectoryCrafter [84]. We evaluate all methods on five prompts: “The lid of a chest is closing”, “A lamp is lowering its
head”, “The blades of a pair of scissors cross together”, “A tiger is sitting down”, “A tiger is walking”.

Qualitative results are shown in Figure 11. Our method consistently achieves better prompt alignment and produces
more natural motion than existing approaches. For quantitative evaluation, we conducted a user study with 50 participants
comparing our results against all baselines: 89.6% of participants rated our method highest in prompt alignment, and 84 %
rated it highest in motion realism. These results further indicate the strength of our approach relative to existing methods.
The full results are provided in Table 3.

C.2. Full Table for User Study

In Table 2 and Table 3, we provide the complete user study results, including the number of participants who preferred each
method for each scene. Across all scenes, our method receives the highest preference in both prompt alignment and motion
realism.

C.3. Failure Cases

Our failure cases mainly arise from two factors: (1) limitations of the underlying video generative model, and (2) the inability
to handle objects that do not exist in the static snapshot but appear later in the motion sequence. Examples are shown in
Figure 12. Our failure cases mainly arise from two factors: (1) limitations of the underlying video generative model, and (2)
the inability to handle objects that do not exist in the static snapshot but appear later in the motion sequence. Examples are
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“A man folds the edges of a box.”
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“A man pours liquid from a can into a bowl”

Figure 12. Failure Cases. The failure in the first row is due to limitations of the video generative model: it cannot produce motion
that matches the prompt, as evidenced by its inability to sample videos aligned with the described action. The failure in the second row
arises because our method cannot generate objects that were not present in the initial static scene. As a result, no liquid can appear when
prompted, since the system cannot generate newly emerging objects.

shown in Figure 12. We elaborate on them below.

Video Generative Model Limitation. Because our approach distills from a pretrained video generation model, its capa-
bilities are inherently linked to those of the underlying model. If the generator cannot synthesize videos aligning with the
prompt, our 4D optimization receives misleading gradients. In such cases, our method cannot generate the correct motion.
This is shown in the first row of Figure 12, where the video model repeatedly fails to sample videos consistent with the
prompt, leading our method to produce incorrect motion.

Inability to Handle Newly Appearing Objects. Another limitation of our method is that it cannot handle objects that do
not exist in the initial static snapshot. Our 4D representation only deforms the geometry present at the start, so any object
that should appear later in the sequence cannot be created. When the prompt involves new objects entering the scene, the
supervision asks for motion that the system cannot produce. In these cases, the optimization either omits the requested effect
or yields incomplete motion, as illustrated in the second row of Figure 12, where no liquid appears because the system cannot
introduce new geometry.

D. Limitation and Future Work

Although our method can generate dynamic scenes with highly realistic interactions among multiple objects, there remain
several limitations that point to promising directions for future work. For the failure cases described in Sec. C.3, those arising
from limitations of the underlying video generative model may be alleviated as video generation technology continues to
improve. For failures caused by newly appearing objects that are not present in the initial static scene, a potential solution is
to incorporate a module capable of generating new geometry during the optimization process.

Apart from the failure cases, another limitation of our method is its extensive training time. In our observations, a sub-
stantial portion of the runtime is spent backpropagating through the VAE [33]. A promising future direction is to develop a
distillation strategy that avoids backpropagating through the VAE entirely. This may be feasible because our objective is to
generate motion rather than RGB appearance, suggesting that full VAE gradients may not be strictly necessary for effective
motion supervision.
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Which video best shows the concept of a cat jumping on a cushion? Please judge based on
how well each one shows this concept.
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Figure 13. Screenshot of the user study question on Prompt Alignment.

E. User Study Template

We provide screenshots of the user study interface in Figure 13 and Figure 14. Participants were asked to select the best,
second-best, and third-best results among five methods. From left to right and top to bottom, the corresponding methods

17



Which video looks like it has the most realistic and substantial movement? Please judge the
videos based on this question.
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Figure 14. Screenshot of the user study question on Motion Realism.

are: Animate3D [30], AnimateAnyMesh [73], MotionDreamer [64] using DynamiCrafter [76], MotionDreamer using Wan
2.2 [65], 4D reconstruction from videos generated by TrajectoryCrafter [84], and our method.
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